Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22
Comparative characterization of microRNA-mediated stress regulatory networks in contrasting rice cultivars is critical to decipher plant stress response. Consequently, a multi-level comparative analysis, using sRNA sequencing, degradome analysis, enzymatic and metabolite assays and metal ion analysi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-11, Vol.7 (1), p.15446-17, Article 15446 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Comparative characterization of microRNA-mediated stress regulatory networks in contrasting rice cultivars is critical to decipher plant stress response. Consequently, a multi-level comparative analysis, using sRNA sequencing, degradome analysis, enzymatic and metabolite assays and metal ion analysis, in drought tolerant and sensitive rice cultivars was conducted. The study identified a group of miRNAs “Cultivar-specific drought responsive” (CSDR)-miRNAs (osa-miR159f, osa-miR1871, osa-miR398b, osa-miR408-3p, osa-miR2878-5p, osa-miR528-5p and osa-miR397a) that were up-regulated in the flag-leaves of tolerant cultivar, Nagina 22 (N22) and Vandana, but down-regulated in the sensitive cultivar, Pusa Basmati 1 (PB1) and IR64, during drought. Interestingly, CSDR-miRNAs target several copper-protein coding transcripts like plantacyanins, laccases and Copper/Zinc superoxide dismutases (Cu/Zn SODs) and are themselves found to be similarly induced under simulated copper-starvation in both N22 and PB1. Transcription factor OsSPL9, implicated in Cu-homeostasis also interacted with osa-miR408-3p and osa-miR528-5p promoters. Further, N22 flag leaves showed lower SOD activity, accumulated ROS and had a higher stomata closure. Interestingly, compared to PB1, internal Cu levels significantly decreased in the N22 flag-leaves, during drought. Thus, the study identifies the unique drought mediated dynamism and interplay of Cu and ROS homeostasis, in the flag leaves of drought tolerant rice, wherein CSDR-miRNAs play a pivotal role. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-15450-1 |