Memristor Based Binary Convolutional Neural Network Architecture With Configurable Neurons
The memristor-based convolutional neural network (CNN) gives full play to the advantages of memristive devices, such as low power consumption, high integration density, and strong network recognition capability. Consequently, it is very suitable for building a wearable embedded application system an...
Gespeichert in:
Veröffentlicht in: | Frontiers in neuroscience 2021-03, Vol.15, p.639526-639526 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The memristor-based convolutional neural network (CNN) gives full play to the advantages of memristive devices, such as low power consumption, high integration density, and strong network recognition capability. Consequently, it is very suitable for building a wearable embedded application system and has broad application prospects in image classification, speech recognition, and other fields. However, limited by the manufacturing process of memristive devices, high-precision weight devices are currently difficult to be applied in large-scale. In the same time, high-precision neuron activation function also further increases the complexity of network hardware implementation. In response to this, this paper proposes a configurable full-binary convolutional neural network (CFB-CNN) architecture, whose inputs, weights, and neurons are all binary values. The neurons are proportionally configured to two modes for different non-ideal situations. The architecture performance is verified based on the MNIST data set, and the influence of device yield and resistance fluctuations under different neuron configurations on network performance is also analyzed. The results show that the recognition accuracy of the 2-layer network is about 98.2%. When the yield rate is about 64% and the hidden neuron mode is configured as -1 and +1, namely ±1 MD, the CFB-CNN architecture achieves about 91.28% recognition accuracy. Whereas the resistance variation is about 26% and the hidden neuron mode configuration is 0 and 1, namely 01 MD, the CFB-CNN architecture gains about 93.43% recognition accuracy. Furthermore, memristors have been demonstrated as one of the most promising devices in neuromorphic computing for its synaptic plasticity. Therefore, the CFB-CNN architecture based on memristor is SNN-compatible, which is verified using the number of pulses to encode pixel values in this paper. |
---|---|
ISSN: | 1662-4548 1662-453X 1662-453X |
DOI: | 10.3389/fnins.2021.639526 |