On artin's characters table of the group (Q2m Cp) when m is an odd number and p is prime number
In this¬¬¬¬¬ paper, we prove that the general form of Artin's characters table of the group (Q2m Cp ) such that Q2m be the Quaternion group of order 4m when m is an odd number and Cp be the cyclic group of order p when p is prime number and (Q2m×Cp) be direct product of Q2m and Cp such that (Q2...
Gespeichert in:
Veröffentlicht in: | Journal of Kufa for Mathematics and Computer 2017-03, Vol.4 (1), p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | ara ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this¬¬¬¬¬ paper, we prove that the general form of Artin's characters table of the group (Q2m Cp ) such that Q2m be the Quaternion group of order 4m when m is an odd number and Cp be the cyclic group of order p when p is prime number and (Q2m×Cp) be direct product of Q2m and Cp such that (Q2m Cp ) = {(q,c):q Q2m ,c Cp} and |Q2m×Cp|=|Q2m|.|Cp|=4m.p=4pm. This table which depends on Artin's characters table of a quaternion group of order 4m when m is an odd number. which is denoted by Ar(Q2m Cp ). |
---|---|
ISSN: | 2076-1171 2518-0010 |
DOI: | 10.31642/JoKMC/2018/040101 |