On artin's characters table of the group (Q2m Cp) when m is an odd number and p is prime number

In this¬¬¬¬¬ paper, we prove that the general form of Artin's characters table of the group (Q2m Cp ) such that Q2m be the Quaternion group of order 4m when m is an odd number and Cp be the cyclic group of order p when p is prime number and (Q2m×Cp) be direct product of Q2m and Cp such that (Q2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Kufa for Mathematics and Computer 2017-03, Vol.4 (1), p.1-7
Hauptverfasser: Abbas, Raja Hasan, Salman, Rana Hasan H.
Format: Artikel
Sprache:ara ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this¬¬¬¬¬ paper, we prove that the general form of Artin's characters table of the group (Q2m Cp ) such that Q2m be the Quaternion group of order 4m when m is an odd number and Cp be the cyclic group of order p when p is prime number and (Q2m×Cp) be direct product of Q2m and Cp such that (Q2m Cp ) = {(q,c):q Q2m ,c Cp} and |Q2m×Cp|=|Q2m|.|Cp|=4m.p=4pm. This table which depends on Artin's characters table of a quaternion group of order 4m when m is an odd number. which is denoted by Ar(Q2m Cp ).
ISSN:2076-1171
2518-0010
DOI:10.31642/JoKMC/2018/040101