Radical Formation in Sugar-Derived Acetals under Solvent-Free Conditions

The degradation of acetal derivatives of the diethylester of galactarate (GalX) was investigated by electron paramagnetic resonance (EPR) spectroscopy in the context of solvent-free, high-temperature reactions like polycondensations. It was demonstrated that less substituted cyclic acetals are prone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-09, Vol.26 (19), p.5897
Hauptverfasser: Wróblewska, Aleksandra A., Ching, H. Y. Vincent, Noordijk, Jurrie, De Wildeman, Stefaan M. A., Bernaerts, Katrien V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The degradation of acetal derivatives of the diethylester of galactarate (GalX) was investigated by electron paramagnetic resonance (EPR) spectroscopy in the context of solvent-free, high-temperature reactions like polycondensations. It was demonstrated that less substituted cyclic acetals are prone to undergo radical degradation at higher temperatures as a result of hydrogen abstraction. The EPR observations were supported by the synthesis of GalX based polyamides via ester-amide exchange-type polycondensations in solvent-free conditions at high temperatures in the presence and in the absence of radical inhibitors. The radical degradation can be offset by the addition of a radical inhibitor. The radical is probably formed on the methylene unit between the oxygen atoms and subsequently undergoes a rearrangement.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26195897