Preparation Methods and Properties of CNT/CF/G Carbon-Based Nano-Conductive Silicone Rubber

Carbon-based nano-conductive silicone rubber is a kind of composite conductive polymer material that has good electrical and thermal conductivities and high magnetic flux. It has good application prospects for replacing most traditional conductive materials, but its mechanical and tensile strengths...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-05, Vol.13 (11), p.6726
Hauptverfasser: Mei, Shunqi, Wang, Jian, Wan, Jitao, Wu, Xichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon-based nano-conductive silicone rubber is a kind of composite conductive polymer material that has good electrical and thermal conductivities and high magnetic flux. It has good application prospects for replacing most traditional conductive materials, but its mechanical and tensile strengths are poor, which limit its applications. In this study, carbon fiber (CF), graphene (G) and carbon nanotubes (CNT) are used as fillers to prepare carbon-based nano-conductive silicone rubber via solution blending, and the preparation methods and properties are analyzed. The results show that when the carbon fiber content is 7.5 wt%, the volume resistivity of carbon fiber conductive silicone rubber is 9.5 × 104 Ω·cm, the surface resistance is 2.88 × 105 Ω, and the tensile strength reaches 2.12 Mpa. When the graphene content is 5.5 wt%, the volume resistivity of graphene conductive silicone rubber is 8.7 × 104 Ω·cm, and the surface resistance is 2.4 × 106 Ω. When the carbon nanotube content is 1.25 wt%, the volume resistivity of carbon nanotube conductive silicone rubber is 1.34 × 104 Ω·cm, and the surface resistance is 1.0 × 106 Ω. The three conductive nano-fillers in the blended carbon nano-conductive silicone rubber form a stable three-dimensional composite conductive network, which enhances the conductivity and stability. When the tensile rate is 520%, the resistance of the blended rubber increases from 2.69 × 103 to 9.66 × 104 Ω, and the rubber maintains good resilience and tensile sensitivity under repeated stretching. The results show that the proposed blended carbon nano-conductive silicone rubber has good properties and great application prospects, verifying the employed research method and showing the credibility of the research results.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13116726