Three-Dimensional Point Cloud Segmentation Algorithm Based on Depth Camera for Large Size Model Point Cloud Unsupervised Class Segmentation

This paper proposes a 3D point cloud segmentation algorithm based on a depth camera for large-scale model point cloud unsupervised class segmentation. The algorithm utilizes depth information obtained from a depth camera and a voxelization technique to reduce the size of the point cloud, and then us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.24 (1), p.112
Hauptverfasser: Fang, Kun, Xu, Kaiming, Wu, Zhigang, Huang, Tengchao, Yang, Yubang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a 3D point cloud segmentation algorithm based on a depth camera for large-scale model point cloud unsupervised class segmentation. The algorithm utilizes depth information obtained from a depth camera and a voxelization technique to reduce the size of the point cloud, and then uses clustering methods to segment the voxels based on their density and distance to the camera. Experimental results show that the proposed algorithm achieves high segmentation accuracy and fast segmentation speed on various large-scale model point clouds. Compared with recent similar works, the algorithm demonstrates superior performance in terms of accuracy metrics, with an average Intersection over Union (IoU) of 90.2% on our own benchmark dataset.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24010112