Modelling smear effect of vertical drains using a diameter reduction method
Vertical drains are used to accelerate consolidation of clays in ground improvement projects. Smear zones exist around these drains, where permeability is reduced due to soil disturbance caused by the installation process. Hansbo solution is widely used in practice to consider the effects of drain d...
Gespeichert in:
Veröffentlicht in: | Journal of Rock Mechanics and Geotechnical Engineering 2024-01, Vol.16 (1), p.279-290 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vertical drains are used to accelerate consolidation of clays in ground improvement projects. Smear zones exist around these drains, where permeability is reduced due to soil disturbance caused by the installation process. Hansbo solution is widely used in practice to consider the effects of drain discharge capacity and smear on the consolidation process. In this study, a computationally efficient diameter reduction method (DRM) obtained from the Hansbo solution is proposed to consider the smear effect without the need to model the smear zone physically. Validated by analytical and numerical results, a diameter reduction factor is analytically derived to reduce the diameter of the drain, while achieving similar solutions of pore pressure dissipation profile as the classical full model of the smear zone and drain. With the DRM, the excess pore pressure u obtained from the reduced drain in the original undisturbed soil zone is accurate enough for practical applications in numerical models. Such performance of DRM is independent of soil material property. Results also show equally accurate performance of DRM under conditions of multi-layered soils and coupled radial-vertical groundwater flow. |
---|---|
ISSN: | 1674-7755 |
DOI: | 10.1016/j.jrmge.2023.06.021 |