Bacteria-Mediated Synthesis of Silver and Silver Chloride Nanoparticles and Their Antimicrobial Activity

Within the frame of this work, the synthesis of silver nanoparticles (Ag NPs) and silver chloride nanoparticles (AgCl NPs) as mediated by microbes has been investigated. The nanoparticles were reduced from a silver nitrate precursor by the presence of bacteria, like Raoultella planticola and Pantoea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-04, Vol.11 (7), p.3134
Hauptverfasser: Ghiuta, Ioana, Croitoru, Catalin, Kost, Joseph, Wenkert, Rodica, Munteanu, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the frame of this work, the synthesis of silver nanoparticles (Ag NPs) and silver chloride nanoparticles (AgCl NPs) as mediated by microbes has been investigated. The nanoparticles were reduced from a silver nitrate precursor by the presence of bacteria, like Raoultella planticola and Pantoea agglomerans. The results show that the characteristic surface plasmon resonance absorption band occurs at about 440 nm. Nanoparticles were also characterized with the help of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD), which showed the formation of spherical Ag/AgCl NPs with a centered cubic crystal structure and a mean particle size of around 10–50 nm. Assays for antimicrobial activity of the biosynthesized nanoparticles demonstrated meaningful results against microorganisms such as Staphylococcus aureus, Streptococcus pyogenes, Salmonella, and Bacillus amyloliquefaciens. Furthermore, this study shows that the combination of the obtained nanoparticles with standard antibiotics may be useful in the fight against emerging microbial drug resistance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11073134