Fixed-Time Adaptive Tracking Control for a Quadrotor Unmanned Aerial Vehicle with Input Saturation

Considering the problem of tracking control for a quadrotor unmanned aerial vehicle (QUAV) with input saturation, parameter uncertainties and external disturbances, a command filtered backstepping-based fixed-time adaptive control scheme was developed. The problem of “explosion of complexity” (EOC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2023-03, Vol.12 (3), p.130
Hauptverfasser: Wang, Haihui, Cui, Guozeng, Li, Huayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering the problem of tracking control for a quadrotor unmanned aerial vehicle (QUAV) with input saturation, parameter uncertainties and external disturbances, a command filtered backstepping-based fixed-time adaptive control scheme was developed. The problem of “explosion of complexity” (EOC) is tackled by utilizing the fixed-time command filter, and the influence of filtered error is removed based on the fractional power-error-compensation mechanism. A fixed-time auxiliary system was designed to compensate for the input saturation of the QUAV. It strictly proves that the closed-loop system signals are fixed-time bounded, and the tracking errors converge to a sufficiently small region near the origin in a fixed time, and the convergence time is independent of the initial states. Finally, the effectiveness of the proposed fixed-time adaptive control algorithm is demonstrated via a numerical simulation.
ISSN:2076-0825
2076-0825
DOI:10.3390/act12030130