Detección de anomalías en grandes volúmenes de datos

El desarrollo de la era digital ha traído como consecuencia un incremento considerable de los volúmenes de datos. A estos grandes volúmenes de datos se les ha denominado big data ya que exceden la capacidad de procesamiento de sistemas de bases de datos convencionales. Diversos sectores consideran v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista FI-UPTC 2019-01, Vol.28 (50), p.62-76
Hauptverfasser: Torres-Domínguez, Omar, Sabater-Fernández, Samuel, Bravo-Ilisatigui, Lisandra, Martin-Rodríguez, Diana, García-Borroto, Milton
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:El desarrollo de la era digital ha traído como consecuencia un incremento considerable de los volúmenes de datos. A estos grandes volúmenes de datos se les ha denominado big data ya que exceden la capacidad de procesamiento de sistemas de bases de datos convencionales. Diversos sectores consideran varias oportunidades y aplicaciones en la detección de anomalías en problemas de big data.  Para realizar este tipo de análisis puede resultar muy útil el empleo de técnicas de minería de datos porque permiten extraer patrones y relaciones desde grandes cantidades de datos. El procesamiento y análisis de estos volúmenes de datos, necesitan de herramientas capaces de procesarlos como Apache Spark y Hadoop. Estas herramientas no cuentan con algoritmos específicos para la detección de anomalías. El objetivo del trabajo es presentar un nuevo algoritmo para la detección de anomalías basado en vecindad para de problemas big data. A partir de un estudio comparativo se seleccionó el algoritmo KNNW por sus resultados, con el fin de diseñar una variante big data. La implementación del algoritmo big data se realizó en la herramienta Apache Spark, utilizando el paradigma de programación paralela MapReduce. Posteriormente se realizaron diferentes experimentos para analizar el comportamiento del algoritmo con distintas configuraciones. Dentro de los experimentos se compararon los tiempos de ejecución y calidad de los resultados entre la variante secuencial y la variante big data. La variante big data obtuvo mejores resultados con diferencia significativa. Logrando que la variante big data, KNNW-BigData, pueda procesar grandes volúmenes de datos.
ISSN:0121-1129
2357-5328
DOI:10.19053/01211129.v28.n50.2019.8793