Induced Maps on Matrices over Fields
Suppose that F is a field and m , n ≥ 3 are integers. Denote by M m n ( F ) the set of all m × n matrices over F and by M n ( F ) the set M n n ( F ) . Let f i j ( i ∈ [ 1 , m ] , j ∈ [ 1 , n ] ) be functions on F , where [ 1 , n ] stands for the set { 1 , ... , n } . We say that a map f : M m n ( F...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2014-01, Vol.2014, p.538-542-952 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that F is a field and m , n ≥ 3 are integers. Denote by M m n ( F ) the set of all m × n matrices over F and by M n ( F ) the set M n n ( F ) . Let f i j ( i ∈ [ 1 , m ] , j ∈ [ 1 , n ] ) be functions on F , where [ 1 , n ] stands for the set { 1 , ... , n } . We say that a map f : M m n ( F ) → M m n ( F ) is induced by { f i j } if f is defined by f : [ a i j ] ↦ [ f i j ( a i j ) ] . We say that a map f on M n ( F ) preserves similarity if A ~ B ⇒ f ( A ) ~ f ( B ) , where A ~ B represents that A and B are similar. A map f on M n ( F ) preserving inverses of matrices means f ( A ) f ( A - 1 ) = I n for every invertible A ∈ M n ( F ) . In this paper, we characterize induced maps preserving similarity and inverses of matrices, respectively. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/596756 |