Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets
Immune checkpoints or coinhibitory receptors, such as cytotoxic T lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, play important roles in regulating T cell responses, and they were proven to be effective targets in treating cancer. In chronic viral infections and cancer, T cells are chronic...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical science 2017-05, Vol.24 (1), p.35-35, Article 35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immune checkpoints or coinhibitory receptors, such as cytotoxic T lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, play important roles in regulating T cell responses, and they were proven to be effective targets in treating cancer. In chronic viral infections and cancer, T cells are chronically exposed to persistent antigen stimulation. This is often associated with deterioration of T cell function with constitutive activation of immune checkpoints, a state called 'exhaustion', which is commonly associated with inefficient control of tumors and persistent viral infections. Immune checkpoint blockade can reinvigorate dysfunctional/exhausted T cells by restoring immunity to eliminate cancer or virus-infected cells. These immune checkpoint blocking antibodies have moved immunotherapy into a new era, and they represent paradigm-shifting therapeutic strategies for cancer treatment. A clearer understanding of the regulatory roles of these receptors and elucidation of the mechanisms of T cell dysfunction will provide more insights for rational design and development of cancer therapies that target immune checkpoints. This article reviews recent advance(s) in molecular understanding of T cell dysfunction in tumor microenvironments. In addition, we also discuss new immune checkpoint targets in cancer therapy. |
---|---|
ISSN: | 1423-0127 1021-7770 1423-0127 |
DOI: | 10.1186/s12929-017-0341-0 |