Photo-Excited Switchable Terahertz Metamaterial Polarization Converter/Absorber

In this paper, a photo-excited switchable terahertz metamaterial (MM) polarization converter/absorber has been presented. The switchable structure comprises an orthogonal double split-ring resonator (ODSRR) and a metallic ground, separated by a dielectric spacer. The gaps of ODSRR are filled with se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2021-09, Vol.11 (9), p.1116
Hauptverfasser: Yu, Dingwang, Dong, Yanfei, Ruan, Youde, Li, Guochao, Li, Gaosheng, Ma, Haomin, Deng, Song, Liu, Zhenpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a photo-excited switchable terahertz metamaterial (MM) polarization converter/absorber has been presented. The switchable structure comprises an orthogonal double split-ring resonator (ODSRR) and a metallic ground, separated by a dielectric spacer. The gaps of ODSRR are filled with semiconductor photoconductive silicon (Si), whose conductivity can be dynamically tuned by the incident pump beam with different power. From the simulated results, it can be observed that the proposed structure implements a wide polarization-conversion band in 2.01–2.56 THz with the conversion ratio of more than 90% and no pump beam power incident illuminating the structure, whereas two absorption peaks operate at 1.98 THz and 3.24 THz with the absorption rates of 70.5% and 94.2%, respectively, in the case of the maximum pump power. Equivalent circuit models are constructed for absorption states to provide physical insight into their operation. Meanwhile, the surface current distributions are also illustrated to explain the working principle. The simulated results show that this design has the advantage of the switchable performance afforded by semiconductor photoconductive Si, creating a path towards THz imaging, active switcher, etc.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst11091116