An apical Phe-His pair defines the Orai1-coupling site and its occlusion within STIM1

Ca 2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-10, Vol.14 (1), p.6921-6921, Article 6921
Hauptverfasser: Zhou, Yandong, Jennette, Michelle R., Ma, Guolin, Kazzaz, Sarah A., Baraniak, James H., Nwokonko, Robert M., Groff, Mallary L., Velasquez-Reynel, Marcela, Huang, Yun, Wang, Youjun, Gill, Donald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ca 2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical—positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions—unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel. The intermembrane complexes mediating calcium signals are crucial but poorly understood. Here the authors identify a Phe-His pair in the calcium-sensing STIM1 protein that controls both activation and pairing of STIM1 with Orai channels to generate calcium signals
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42254-x