Simulation and Analysis of Wind Pressure Coefficient of Landslide-Type Long-Span Roof Structure

This article carries out a numerical simulation of a landslide-type long-span roof structure, Harbin Wanda Cultural Industry Complex. The maximum span of the landslide-type roof is 150 m and the minimum span is 90 m, with a minimum height of 40 m and a maximum height of 120 m, and the roof area is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Civil Engineering 2021, Vol.2021 (1)
Hauptverfasser: Rong, Bin, Yin, Shuhao, Wang, Quankui, Yang, Yanhong, Qiu, Jian, Lin, Changsheng, Zhang, Ruoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article carries out a numerical simulation of a landslide-type long-span roof structure, Harbin Wanda Cultural Industry Complex. The maximum span of the landslide-type roof is 150 m and the minimum span is 90 m, with a minimum height of 40 m and a maximum height of 120 m, and the roof area is divided into three different parts. The large eddy simulation (LES) method is used to simulate and record the wind pressure coefficient of the roof. The distribution law and cause of the mean wind pressure coefficient of the roof are firstly analyzed, and the comparison with the existing wind tunnel test data proves the validity of the numerical simulation. Secondly, a qualitative analysis is made on the distribution of root mean square (RMS) fluctuating coefficients. Subsequently, the non-Gaussian characteristics of the roof are briefly discussed, and the peak factor distribution is calculated. Finally, based on the total wind pressure coefficient, a simple evaluation method for judging favorable and unfavorable wind direction angles is proposed, and only the shape of the roof and wind angle need to be known.
ISSN:1687-8086
1687-8094
DOI:10.1155/2021/8846568