Quantifying source contributions to ambient NH3 using Geo-AI with time lag and parcel tracking functions

•AutoML, time lag and parcel tracking functions were used to develop model.•The SHAP function was used to analyze feature importance.•Developed model has the potential to account for up to 96% of the total variance.•Waterbody, traffic and agriculture were improtant factors for NH3 concentrations. Am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environment international 2024-03, Vol.185, p.108520-108520, Article 108520
Hauptverfasser: Wu, Chih-Da, Zhu, Jun-Jie, Hsu, Chin-Yu, Shie, Ruei-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•AutoML, time lag and parcel tracking functions were used to develop model.•The SHAP function was used to analyze feature importance.•Developed model has the potential to account for up to 96% of the total variance.•Waterbody, traffic and agriculture were improtant factors for NH3 concentrations. Ambient ammonia (NH3) plays an important compound in forming particulate matters (PMs), and therefore, it is crucial to comprehend NH3′s properties in order to better reduce PMs. However, it is not easy to achieve this goal due to the limited range/real-time NH3 data monitored by the air quality stations. While there were other studies to predict NH3 and its source apportionment, this manuscript provides a novel method (i.e., GEO-AI)) to look into NH3 predictions and their contribution sources. This study represents a pioneering effort in the application of a novel geospatial-artificial intelligence (Geo-AI) base model with parcel tracking functions. This innovative approach seamlessly integrates various machine learning algorithms and geographic predictor variables to estimate NH3 concentrations, marking the first instance of such a comprehensive methodology. The Shapley additive explanation (SHAP) was used to further analyze source contribution of NH3 with domain knowledge. From 2016 to 2018, Taichung's hourly average NH3 values were predicted with total variance up to 96%. SHAP values revealed that waterbody, traffic and agriculture emissions were the most significant factors to affect NH3 concentrations in Taichung among all the characteristics. Our methodology is a vital first step for shaping future policies and regulations and is adaptable to regions with limited monitoring sites.
ISSN:0160-4120
1873-6750
DOI:10.1016/j.envint.2024.108520