Performance Assessment of a High-Frequency Radar Network for Detecting Surface Currents in the Pearl River Estuary

The performance of a high-frequency (HF) radar network situated within the Pearl River Estuary from 17 July to 13 August 2022 is described via a comparison with seven acoustic Doppler current profilers (ADCPs). The radar network consists of six OSMAR-S100 compact HF radars, with a transmitting frequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-01, Vol.16 (1), p.198
Hauptverfasser: Zhu, Langfeng, Lu, Tianyi, Yang, Fan, Wei, Chunlei, Wei, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of a high-frequency (HF) radar network situated within the Pearl River Estuary from 17 July to 13 August 2022 is described via a comparison with seven acoustic Doppler current profilers (ADCPs). The radar network consists of six OSMAR-S100 compact HF radars, with a transmitting frequency of 13–16 MHz and a direction-finding technique. Both the radial currents and vector velocities showed good agreement with the ADCP results (coefficient of determination r2: 0.42–0.78; RMS difference of radials: 11–21.6 cm s−1; bearing offset Δθ: −4.8°–16.1°; complex correlation coefficient γ: 0.62–0.96; and phase angle α: −24.3°–17.8°). For these radars, the Δθ values are not constant but vary with azimuthal angles. The relative positions between the HF radar and ADCPs, as well as factors such as the presence of island terrain obstructing the signal, significantly influence the errors. The results of spectral analysis also demonstrate a high level of consistency and the capability of HF radar to capture diurnal and semidiurnal tidal frequencies. The tidal characteristics and the Empirical Orthogonal Function (EOF) results measured by the HF radars also resemble the ADCPs and align with the characteristics of the estuarine current field.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16010198