Tree-CNN: from generalization to specialization

Traditional convolutional neural networks (CNNs) classify all categories by a single network, which passes all kinds of samples through totally the same network flow. In fact, it is quite challengeable to distinguish schooner with ketch and chair by a single network. To address it, we propose a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on wireless communications and networking 2018-09, Vol.2018 (1), p.1-12, Article 216
Hauptverfasser: Jiang, Shenwang, Xu, Tingfa, Guo, Jie, Zhang, Jizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional convolutional neural networks (CNNs) classify all categories by a single network, which passes all kinds of samples through totally the same network flow. In fact, it is quite challengeable to distinguish schooner with ketch and chair by a single network. To address it, we propose a new image classification architecture composed of a cluster algorithm and the Tree-CNN. The cluster algorithm devotes to classifying similar fine categories into a coarse category. The Tree-CNN is comprised of a Trunk-CNN for coarse classification of all categories and Branch-CNNs to treat different groups of similar categories differently. Branch-CNNs are fine-tuning based on the Trunk-CNN, which extracts the special feature map of image and divides it into fine categories. But Branch-CNNs bring extra computation and are hard to train. To address it, we introduce adaptive algorithm to balance the heavy computation and accuracy. We have tested Tree-CNNs based on CaffeNet, VGG16, and GoogLeNet in Caltech101 and Caltech256 for image classification. Experiment results show the superiority of the proposed Tree-CNN.
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-018-1197-z