IGWO-IVNet3: DL-Based Automatic Diagnosis of Lung Nodules Using an Improved Gray Wolf Optimization and InceptionNet-V3
Artificial intelligence plays an essential role in diagnosing lung cancer. Lung cancer is notoriously difficult to diagnose until it has progressed to a late stage, making it a leading cause of cancer-related mortality. Lung cancer is fatal if not treated early, making this a significant issue. Init...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (24), p.9603 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial intelligence plays an essential role in diagnosing lung cancer. Lung cancer is notoriously difficult to diagnose until it has progressed to a late stage, making it a leading cause of cancer-related mortality. Lung cancer is fatal if not treated early, making this a significant issue. Initial diagnosis of malignant nodules is often made using chest radiography (X-ray) and computed tomography (CT) scans; nevertheless, the possibility of benign nodules leads to wrong choices. In their first phases, benign and malignant nodules seem very similar. Additionally, radiologists have a hard time viewing and categorizing lung abnormalities. Lung cancer screenings performed by radiologists are often performed with the use of computer-aided diagnostic technologies. Computer scientists have presented many methods for identifying lung cancer in recent years. Low-quality images compromise the segmentation process, rendering traditional lung cancer prediction algorithms inaccurate. This article suggests a highly effective strategy for identifying and categorizing lung cancer. Noise in the pictures was reduced using a weighted filter, and the improved Gray Wolf Optimization method was performed before segmentation with watershed modification and dilation operations. We used InceptionNet-V3 to classify lung cancer into three groups, and it performed well compared to prior studies: 98.96% accuracy, 94.74% specificity, as well as 100% sensitivity. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22249603 |