Considerations regarding the anti-icing system for the ship propulsion plant with gas turbine
Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines a...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2021-01, Vol.286, p.4013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202128604013 |