Reference equations for pulmonary diffusing capacity using segmented regression show similar predictive accuracy as GAMLSS models

PurposeTo determine whether generalised additive models of location, scale and shape (GAMLSS) developed for pulmonary diffusing capacity are superior to segmented (piecewise) regression models, and to update reference equations for pulmonary diffusing capacity for carbon monoxide (DLCO) and nitric o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMJ open respiratory research 2022-02, Vol.9 (1), p.e001087
Hauptverfasser: Zavorsky, Gerald Stanley, Cao, Jiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeTo determine whether generalised additive models of location, scale and shape (GAMLSS) developed for pulmonary diffusing capacity are superior to segmented (piecewise) regression models, and to update reference equations for pulmonary diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO), which may be affected by the equipment used for its measurement.MethodsData were pooled from five studies that developed reference equations for DLCO and DLNO (n=530 F/546 M; 5–95 years old, body mass index 12.4–39.0 kg/m2). Reference equations were created for DLCO and DLNO using both GAMLSS and segmented linear regression. Cross-validation was applied to compare the prediction accuracy of the two models as follows: 80% of the pooled data were used to create the equations, and the remaining 20% was used to examine the fit. This was repeated 100 times. Then, the root-mean-square error was compared between both models.ResultsIn males, GAMLSS models were 7% worse to 3% better compared to segmented regression for DLCO and DLNO. In females, GAMLSS models were 2% worse to 5% better compared to segmented linear regression for DLCO and DLNO. The Hyp'Air Compact measured DLNO and alveolar volume (VA) that was approximately 16–20 mL/min/mm Hg and 0.2–0.4 L higher, respectively, compared to the Jaeger MasterScreen Pro. The measured DLCO was similar between devices after controlling for altitude.ConclusionsFor the development of pulmonary function reference equations, we propose that segmented linear regression can be used instead of GAMLSS due to its simplicity, especially when the predictive accuracy is similar between the two models, overall.
ISSN:2052-4439
2052-4439
DOI:10.1136/bmjresp-2021-001087