Flexible thin parts multi‐target positioning method of multi‐level feature fusion

In new energy battery manufacturing, machine vision is widely used in automated assembly scenarios for key parts. To improve the accuracy and real‐time multi‐target positioning recognition of flexible thin parts, this paper proposes a multi‐level feature fusion template matching algorithm based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2024-09, Vol.18 (11), p.2996-3012
Hauptverfasser: Deng, Yaohua, Liu, Xiali, Yang, Kenan, Li, Zehang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In new energy battery manufacturing, machine vision is widely used in automated assembly scenarios for key parts. To improve the accuracy and real‐time multi‐target positioning recognition of flexible thin parts, this paper proposes a multi‐level feature fusion template matching algorithm based on the Gaussian pyramid. Firstly, the algorithm constructs a Gaussian pyramid by multi‐scale image construction. Secondly, considering the image features of each layer of the pyramid, this paper uses the grey‐based Fast Normalized Matching algorithm to obtain coarse positioning coordinates on the upper layer, and the improved Linemod‐2D algorithm is applied to the bottom layer image to get accurate positioning coordinates. Finally, the positioning coordinates returned from each layer are fused to obtain the final positioning coordinate. The experimental results show that the proposed algorithm achieves excellent performance in nickel plate positioning and recognition. It exhibits satisfactory performance in nickel sheet localization and recognition. In terms of angular error, repeat accuracy, and matching speed, it competes favourably with Halcon, VisionMaster, and SCISmart. Its positioning error closely approximates that of Halcon, effectively meeting the practical production demands for high‐speed feeding and high‐precision positioning. This paper proposes a multi‐level feature fusion template matching algorithm that combines the two algorithms of gradient matching and grey matching. This paper uses the grey‐based Fast Normalized Matching algorithm for coarse positioning coordinates on the upper layer and applies the improved Linemod‐2D algorithm on the bottom layer to find the precise positioning coordinates.
ISSN:1751-9659
1751-9667
DOI:10.1049/ipr2.13151