Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth

Drought, low nutrition, and weeds have become the major limiting factors of young kiwifruit orchards. In this study, the effects of intercropping Vicia sativa L. on the moisture, microbe community, enzyme activity, and nutrients in rhizosphere soils of young kiwifruit plants and their growth were in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Horticulturae 2021-10, Vol.7 (10), p.335
Hauptverfasser: Wang, Qiuping, Zhang, Cheng, Li, Jiaohong, Wu, Xiaomao, Long, Youhua, Su, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought, low nutrition, and weeds have become the major limiting factors of young kiwifruit orchards. In this study, the effects of intercropping Vicia sativa L. on the moisture, microbe community, enzyme activity, and nutrients in rhizosphere soils of young kiwifruit plants and their growth were investigated. The results show that intercropping V. sativa could effectively enhance soil moisture by 1.39–1.47 folds compared with clean tillage. Moreover, intercropping V. sativa could significantly (p < 0.01) increase the microbial community, enzyme activity and nutrient of kiwifruit rhizosphere soils, and improve plant height, stem girth, leaf number, maximum leaf length, maximum leaf width, and chlorophyll content of young kiwifruit plants by 43.60%, 18.68%, 43.75%, 18.09%, 21.15%, and 67.57% compared to clean tillage, respectively. The moisture, microbial quantity, enzyme activity, and nutrients in rhizosphere soils of young kiwifruit plants exhibited good correlations with their plant height, stem girth, leaf number, maximum leaf length, maximum leaf width, and chlorophyll content. This study highlights that intercropping V. sativa in young kiwifruit orchard can be used as an effective, labor-saving, economical and sustainable practice to improve the moisture, microbial community, enzyme activity, and nutrient of soils, and enhance kiwifruit plant growth and control weeds.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae7100335