Distinct networks of periaqueductal gray columns in pain and threat processing

Noxious events that can cause physical damage to the body are perceived as threats. In the brainstem, the periaqueductal gray (PAG) ensures survival by generating an appropriate response to these threats. Hence, the experience of pain is coupled with threat signaling and interfaces in the dl/l and v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2022-04, Vol.250, p.118936-118936, Article 118936
Hauptverfasser: Wang, Sean, Veinot, Jennika, Goyal, Amita, Khatibi, Ali, Lazar, Sara W., Hashmi, Javeria Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noxious events that can cause physical damage to the body are perceived as threats. In the brainstem, the periaqueductal gray (PAG) ensures survival by generating an appropriate response to these threats. Hence, the experience of pain is coupled with threat signaling and interfaces in the dl/l and vlPAG columns. In this study, we triangulate the functional circuits of the dl/l and vlPAG by using static and time-varying functional connectivity (FC) in multiple fMRI scans in healthy participants (n = 37, 21 female). The dl/l and vlPAG were activated during cue, heat, and rating periods when the cue signaled a high threat of experiencing heat pain and when the incoming intensity of heat pain was unknown. Responses were significantly lower after low threat cues. The two regions responded similarly to the cued conditions but showed prominent distinctions in the extent of FC with other brain regions. Thus, both static and time-varying FC showed significant differences in the functional circuits of dl/l and vlPAG in rest and task scans. The dl/lPAG consistently synchronized with the salience network and the thalamus, suggesting a role in threat detection, while the vlPAG exhibited more widespread synchronization and frequently connected with memory/language and sensory regions. Hence, these two PAG regions process heat pain when stronger pain is expected or when it is uncertain, and preferentially synchronize with distinct brain circuits in a reproducible manner. The dl/lPAG seems more directly involved in salience detection, while the vlPAG seems engaged in contextualizing threats.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2022.118936