The Integrability of a New Fractional Soliton Hierarchy and Its Application
Two fractional soliton equations are presented generated from the same spectral problem involved in a fractional potential by the zero-curvature representations. They are a kind of special reductions of the famous AKNS system. The two equations are integrable for they both possess explicit soliton s...
Gespeichert in:
Veröffentlicht in: | Advances in Mathematical Physics 2022-05, Vol.2022, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two fractional soliton equations are presented generated from the same spectral problem involved in a fractional potential by the zero-curvature representations. They are a kind of special reductions of the famous AKNS system. The two equations are integrable for they both possess explicit soliton solutions constructed by the N−fold Darboux transformation. As an application of the obtained solutions, new soliton solutions of the classic 2+1-dimensional Kadometsev-Petviashvili (KP) equation are soughed out by a cubic polynomial relation. Dynamic properties are analyzed in detail. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2022/2200092 |