Land Use Classification of High-Resolution Multispectral Satellite Images With Fine-Grained Multiscale Networks and Superpixel Postprocessing

Land use recognition from multispectral satellite images is fundamentally critical for geological applications, but the results are not satisfied. The scale dimension of current multiscale learning is too coarse to account for rich scales in multispectral images, and pixel-wise classification tends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.3264-3278
Hauptverfasser: Ma, Yaobin, Deng, Xiaohua, Wei, Jingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land use recognition from multispectral satellite images is fundamentally critical for geological applications, but the results are not satisfied. The scale dimension of current multiscale learning is too coarse to account for rich scales in multispectral images, and pixel-wise classification tends to produce “salt-and-pepper” labels due to possible misclassification in heterogeneous regions. In this article, these issues are addressed by proposing a new pixel-wise classification model with finer scales for convolutional neural networks. The model is designed to extract multiscale contextual information using multiscale networks at a fine-grained level, addressing the issue of insufficient multiscale learning for classification. Furthermore, a small-scale segmentation-combination method is introduced as a postprocessing solution to smooth fragmented classification results. The proposed method is tested on GF-1, GF-2, DEIMOS-2, GeoEye-1, and Sentinel-2 satellite images, and compared with six neural-network-based algorithms. The results demonstrate the effectiveness of the proposed model in finding objects of large scale difference, improving classification accuracy, and reducing classified fragments. The discussion also illustrates that convolutional neural networks and pixel-wise inference are more practical than transformer and patch-wise recognition.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2023.3260448