The Development of a High-Static Low-Dynamic Cushion for a Seat Containing Large Amounts of Friction

Exposure to whole-body vibration (WBV) has been shown to result in lower-back pain, sciatica, and other forms of discomfort for operators of heavy equipment. While WBV is defined to be between 0.5 and 80 Hz, humans are most sensitive to vertical vibrations between 5 and 10 Hz. To reduce WBV exposure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vibration 2024-06, Vol.7 (2), p.388-406
Hauptverfasser: Habegger, Janik, Govers, Megan E, Hassan, Marwan, Oliver, Michele L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposure to whole-body vibration (WBV) has been shown to result in lower-back pain, sciatica, and other forms of discomfort for operators of heavy equipment. While WBV is defined to be between 0.5 and 80 Hz, humans are most sensitive to vertical vibrations between 5 and 10 Hz. To reduce WBV exposure, a novel seat cushion is proposed that optimally tunes a High-Static Low-Dynamic (HSLD) stiffness isolator. Experimental and numerical results indicate that the cushion can drastically increase the size of the attenuation region compared to a stock foam cushion. When placed on top of a universal tractor seat, the cushion is capable of mitigating vibrations at frequencies higher than 1.1 Hz. For comparison, the universal tractor seat with a stock foam cushion isolates vibrations between 3.4 and 4.1 Hz, as well as frequencies larger than 4.8 Hz. Friction within the universal seat is accurately modeled using the Force Balance Friction Model (FBFM), and an analysis is conducted to show why friction hinders overall seat performance. Finally, the cushion is shown to be robust against changes in mass, assuming accurate tuning of the preload is possible.
ISSN:2571-631X
2571-631X
DOI:10.3390/vibration7020020