Structure of n-quasi left m-invertible and related classes of operators

Given Hilbert space operators , let and denote the elementary operators and . Let or . Assuming commutes with , and choosing to be the positive operator for some positive integer , this paper exploits properties of elementary operators to study the structure of -quasi -operators to bring together, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demonstratio mathematica 2020-10, Vol.53 (1), p.249-268
Hauptverfasser: Duggal, Bhagwati Prashad, Kim, In Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given Hilbert space operators , let and denote the elementary operators and . Let or . Assuming commutes with , and choosing to be the positive operator for some positive integer , this paper exploits properties of elementary operators to study the structure of -quasi -operators to bring together, and improve upon, extant results for a number of classes of operators, such as -quasi left -invertible operators, -quasi -isometric operators, -quasi -self-adjoint operators and -quasi symmetric operators (for some conjugation of ). It is proved that is the perturbation by a nilpotent of the direct sum of an operator satisfying , , with the 0 operator; if is also left invertible, then is similar to an operator such that . For power bounded and such that and , is polaroid (i.e., isolated points of the spectrum are poles). The product property, and the perturbation by a commuting nilpotent property, of operators satisfying , given certain commutativity properties, transfers to operators satisfying
ISSN:0420-1213
2391-4661
2391-4661
DOI:10.1515/dema-2020-0020