Effect of Optical and Morphological Control of Single-Structured LEC Device

We investigated the performance of single-structured light-emitting electrochemical cell (LEC) devices with Ru(bpy)3(PF6)2 polymer composite as an emission layer by controlling thickness and heat treatment. When the thickness was smaller than 120–150 nm, the device performance decreased because of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-07, Vol.12 (7), p.843
Hauptverfasser: Jeong, Woo Jin, Lee, Jong Ik, Kwak, Hee Jung, Jeon, Jae Min, Shin, Dong Yeol, Kang, Moon Sung, Kim, Jun Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the performance of single-structured light-emitting electrochemical cell (LEC) devices with Ru(bpy)3(PF6)2 polymer composite as an emission layer by controlling thickness and heat treatment. When the thickness was smaller than 120–150 nm, the device performance decreased because of the low optical properties and non-dense surface properties. On the other hand, when the thickness was over than 150 nm, the device had too high surface roughness, resulting in high-efficiency roll-off and poor device stability. With 150 nm thickness, the absorbance increased, and the surface roughness was low and dense, resulting in increased device characteristics and better stability. The heat treatment effect further improved the surface properties, thus improving the device characteristics. In particular, the external quantum efficiency (EQE) reduction rate was shallow at 100 °C, which indicates that the LEC device has stable operating characteristics. The LEC device exhibited a maximum luminance of 3532 cd/m2 and an EQE of 1.14% under 150 nm thickness and 100 °C heat treatment.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12070843