Selection of Inertial and Power Curtailment Control Methods for Wind Power Plants to Enhance Frequency Stability
As renewable energy penetrates the power system, system operators are required to curtail output power from generation units to balance the power supply and demand. However, large curtailment from wind power plants (WPPs) may instantly cause excessive output power decrement, causing system frequency...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-04, Vol.15 (7), p.2630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As renewable energy penetrates the power system, system operators are required to curtail output power from generation units to balance the power supply and demand. However, large curtailment from wind power plants (WPPs) may instantly cause excessive output power decrement, causing system frequency to drop significantly before reaching its nominal value. In order to solve this problem, this paper proposes a cooperative control framework to determine the operation of WPPs in two control methods, which are the stepwise inertial control (SIC) method and the curtailed control method. The proposed framework first determines the WPPs to operate in the curtailed control method to provide the required power curtailment. Next, it determines the WPPs to operate in the SIC method considering their releasable kinetic energy to provide an effective inertial response and compensate for the sudden excessive output power decrement caused by other WPPs operated in the curtailed control method. Therefore, each WPP is operated in one of two control methods to provide required power curtailment while reducing the sudden excessive output power decrement. To verify the effectiveness of the proposed cooperative control framework, several case studies are carried out on the practical South Korea electric power system. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15072630 |