Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive LACS Gene Family in Soybean (Glycine max)
Long-chain acyl-CoA synthases (LACSs) are a key factor in the formation of acyl-CoA after fatty acid hydrolysis and play an important role in plant stress resistance. This gene family has not been research in soybeans. In this study, the soybean (Glycine max (L.) Merr.) whole genome was identified,...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2022-06, Vol.12 (7), p.1496 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-chain acyl-CoA synthases (LACSs) are a key factor in the formation of acyl-CoA after fatty acid hydrolysis and play an important role in plant stress resistance. This gene family has not been research in soybeans. In this study, the soybean (Glycine max (L.) Merr.) whole genome was identified, the LACS family genes of soybean were screened, and the bioinformatics, tissue expression, abiotic stress, drought stress and co-expression of transcription factors of the gene family were analyzed to preliminarily clarify the function of the LACS family of soybean. A total of 17 LACS genes were screened from soybean genome sequencing data. A bioinformatics analysis of the GmLACS gene was carried out from the aspects of phylogeny, gene structure, conserved sequence and promoter homeopathic element. The transcription spectra of GmLACSs in different organs and abiotic stresses were used by qRT-PCR. The GmLACS genes, which co-expresses the significant response of the analysis of drought stress and transcription factors. The results showed that all soybean LACS have highly conserved AMP-binding domains, and all soybean LACS genes were divided into 6 subfamilies. Transcriptome analysis indicated that the gene-encoding expression profiles under alkali, low temperature, and drought stress. The expression of GmLACS9/15/17 were significantly upregulated under alkali, low temperature and drought stress. Co-expression analysis showed that there was a close correlation between transcription factors and genes that significantly responded to LACS under drought stress. These results provide a theoretical and empirical basis for clarifying the function of LACS family genes and abiotic stress response mechanism of soybean. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy12071496 |