Influence of Al Doping on the Physical Properties of CuO Thin Films
The synthesis of cupric oxide (CuO) films on cost-efficient, optical grade borosilicate-crown glass substrates (BK7) via chemical spray pyrolysis (CSP), either in pure form or with a low concentration of Al doping (below 1%), is presented and discussed. As a non-toxic p-type semiconductor, exhibitin...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-07, Vol.13 (14), p.8193 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of cupric oxide (CuO) films on cost-efficient, optical grade borosilicate-crown glass substrates (BK7) via chemical spray pyrolysis (CSP), either in pure form or with a low concentration of Al doping (below 1%), is presented and discussed. As a non-toxic p-type semiconductor, exhibiting monoclinic crystal structure and widely tuneable band gap (Eg), it is used in various applications. The optical properties, morphology and crystalline phases of CuO films are influenced by substrate temperature during thin film growth (annealing) and also by chemical doping very often introduced to modify grain boundary energy. The importance of our research subject is therefore perfectly justified and is essentially based on the fact that the potential fields of application are wide. Thus, herein we emphasize impact of the annealing stage and Al doping upon the structural, optical and electrical properties of the resulting product. Raman spectroscopy analysis confirms the presence of vibrational bands characteristic of a CuO phase, while X-ray diffraction (XRD) confirms the polycrystalline nature of the pure films. The thickness of the CuO films grown at 350 °C over three annealing intervals is proportional to the annealing time, while the crystallite phase in the films is proportional with the annealing temperature. Furthermore, XRD analysis of the Al:CuO films indicates the formation of a monoclinic-type structure (CuO phase) exhibiting a preferred orientation along the (002) plane, together with a significant grain size reduction from ~88 to ~45 nm as Al content increases. The transmittance spectra (between 400 and 800 nm) reveal a decrease in the transmittance from 48% to 15% with as the Al doping ratio increases. Additionally, the bandgap energy of the films is measured, modelled and discussed, using data from an ultraviolet–visible (UV-Vis) spectrophotometer. The calculated Eg is approximately 3.5 eV, which decreases with respect to the increasing annealing temperature, while the electrical resistivity varies from ~19 to ~4.6 kOhm.cm. Finally, perspectives and applications of CuO films are suggested, since the films are found to have a remarkable improvement in their structure and optical properties when doped with Al. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13148193 |