On Stability Analysis of Finite Difference Schemes for Generalized Kuramoto-Tsuzuki Equation with Nonlocal Boundary Conditions

A general methodology for the stability analysis of discrete approximations of nonstationary PDEs is applied to solve the Kuramoto-Tsuzuki equation, including also the Schr¨odinger problem. Stability regions are constructed for the explicit, backward and symmetrical Euler schemes. The obtained resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2016-09, Vol.21 (5), p.630-643
Hauptverfasser: Leonavičienė, Teresė, Bugajev, Andrej, Jankevičiūtė, Gerda, Čiegis, Raimondas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general methodology for the stability analysis of discrete approximations of nonstationary PDEs is applied to solve the Kuramoto-Tsuzuki equation, including also the Schr¨odinger problem. Stability regions are constructed for the explicit, backward and symmetrical Euler schemes. The obtained results are applied to solve the Kuramoto-Tsuzuki problem with a non-local integral boundary condition. Results of computational experiments are provided.
ISSN:1392-6292
1648-3510
DOI:10.3846/13926292.2016.1198836