Validation of a Deep Learning Algorithm for Continuous, Real-Time Detection of Atrial Fibrillation Using a Wrist-Worn Device in an Ambulatory Environment

Wearable devices may be useful for identification, quantification and characterization, and management of atrial fibrillation (AF). To date, consumer wrist-worn devices for AF detection using photoplethysmography-based algorithms perform only periodic checks when the user is stationary and are US Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Heart Association 2023-10, Vol.12 (19), p.e030543
Hauptverfasser: Poh, Ming-Zher, Battisti, Anthony J, Cheng, Li-Fang, Lin, Janice, Patwardhan, Anil, Venkataraman, Ganesh S, Athill, Charles A, Patel, Nimesh S, Patel, Chinmay P, Machado, Christian E, Ellis, Jeffrey T, Crosson, Lori A, Tamura, Yuriko, Plowman, R Scooter, Turakhia, Mintu P, Ghanbari, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable devices may be useful for identification, quantification and characterization, and management of atrial fibrillation (AF). To date, consumer wrist-worn devices for AF detection using photoplethysmography-based algorithms perform only periodic checks when the user is stationary and are US Food and Drug Administration cleared for prediagnostic uses without intended use for clinical decision-making. There is an unmet need for medical-grade diagnostic wrist-worn devices that provide long-term, continuous AF monitoring. We evaluated the performance of a wrist-worn device with lead-I ECG and continuous photoplethysmography (Verily Study Watch) and photoplethysmography-based convolutional neural network for AF detection and burden estimation in a prospective multicenter study that enrolled 117 patients with paroxysmal AF. A 14-day continuous ECG monitor (Zio XT) served as the reference device to evaluate algorithm sensitivity and specificity for detection of AF in 15-minute intervals. A total of 91 857 intervals were contributed by 111 subjects with evaluable reference and test data (18.3 h/d median watch wear time). The watch was 96.1% sensitive (95% CI, 92.7%-98.0%) and 98.1% specific (95% CI, 97.2%-99.1%) for interval-level AF detection. Photoplethysmography-derived AF burden estimation was highly correlated with the reference device burden ( =0.986) with a mean difference of 0.8% (95% limits of agreement, -6.6% to 8.2%). Continuous monitoring using a photoplethysmography-based convolutional neural network incorporated in a wrist-worn device has clinical-grade performance for AF detection and burden estimation. These findings suggest that monitoring can be performed with wrist-worn wearables for diagnosis and clinical management of AF. URL: https://www.clinicaltrials.gov; Unique identifier: NCT04546763.
ISSN:2047-9980
2047-9980
DOI:10.1161/JAHA.123.030543