Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering
Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2019-04, Vol.17 (1), p.51-51, Article 51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic polyethylene material to replace missing facial cartilage but unfortunately it has high levels of surgical complications including infection and extrusion, making it an unsuitable replacement. New materials for facial cartilage reconstruction are required to improve the outcomes of surgical reconstruction. This study has developed a new nanomaterial with argon surface modification for auricular cartilage replacement to overcome the complications with Medpor.
Polyurethanes nanocomposites scaffolds (PU) were modified with argon plasma surface modification (Ar) and compared to Medpor in vitro and in vivo. Ar scaffolds allowed for greater protein adsorption than Medpor and PU after 48 h (p |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-019-0477-z |