Infinite memory effects on the stabilization of a biharmonic Schrödinger equation

This paper deals with the stabilization of the linear biharmonic Schrödinger equation in an $n$-dimensional open bounded domain under Dirichlet–Neumann boundary conditions considering three infinite memory terms as damping mechanisms. We show that depending on the smoothness of initial data and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2023-01, Vol.2023 (39), p.1-23
Hauptverfasser: de A. Capistrano-Filho, Roberto, de Jesus, Isadora, Gonzalez Martinez, Victor Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the stabilization of the linear biharmonic Schrödinger equation in an $n$-dimensional open bounded domain under Dirichlet–Neumann boundary conditions considering three infinite memory terms as damping mechanisms. We show that depending on the smoothness of initial data and the arbitrary growth at infinity of the kernel function, this class of solution goes to zero with a polynomial decay rate like t − n depending on assumptions about the kernel function associated with the infinite memory terms.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2023.1.39