Design and Fabrication of High-Quality Two-Dimensional Silicon-Based Photonic Crystal Optical Cavity with Integrated Waveguides
The emergences of silicon-based photonic crystal (PhC) waveguides and two-dimensional (2D) PhC line-defect optical cavities have revolutionized the field of integrated photonics. In this paper, we design and fabricate a high-quality (high-Q) 2D silicon-based PhC optical cavity with integrated wavegu...
Gespeichert in:
Veröffentlicht in: | Photonics 2024-08, Vol.11 (8), p.753 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergences of silicon-based photonic crystal (PhC) waveguides and two-dimensional (2D) PhC line-defect optical cavities have revolutionized the field of integrated photonics. In this paper, we design and fabricate a high-quality (high-Q) 2D silicon-based PhC optical cavity with integrated waveguides. We employ the 2D finite-difference time-domain (FDTD) method to simulate the cavity, considering two different thicknesses: 0.5 μm and 0.25 μm. By optimizing the line-defect and air-slot widths for the integrated PhC waveguides, we are able to achieve remarkable Q-factors for the PhC optical cavity. With a silicon thickness of 0.5 μm, the high-Q achieves an impressively high value of 8.01 × 106, while at a silicon thickness of 0.25 μm, it achieves 1.91 × 107. This research highlights the importance of design optimization and fabrication techniques in achieving high-Q optical devices using PhC and silicon-based structures. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics11080753 |