A Robust Nonlinear Observer for a Class of Neural Mass Models

A new method of designing a robust nonlinear observer is presented for a class of neural mass models by using the Lur’e system theory and the projection lemma. The observer is robust towards input uncertainty and measurement noise. It is applied to estimate the unmeasured membrane potential of neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-5
Hauptverfasser: Liu, Xian, Miao, Dongkai, Gao, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method of designing a robust nonlinear observer is presented for a class of neural mass models by using the Lur’e system theory and the projection lemma. The observer is robust towards input uncertainty and measurement noise. It is applied to estimate the unmeasured membrane potential of neural populations from the electroencephalogram (EEG) produced by the neural mass models. An illustrative example shows the effectiveness of the proposed method.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2014/215943