Forecasting Wind Power Generation Using Artificial Neural Network: “Pawan Danawi”—A Case Study from Sri Lanka
Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particula...
Gespeichert in:
Veröffentlicht in: | Journal of Electrical and Computer Engineering 2021, Vol.2021, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE |
---|---|
ISSN: | 2090-0147 2090-0155 |
DOI: | 10.1155/2021/5577547 |