The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism

It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioactive materials 2021-02, Vol.6 (2), p.333-345
Hauptverfasser: Du, Zhipo, Feng, Xinxing, Cao, Guangxiu, She, Zhending, Tan, Rongwei, Aifantis, Katerina E., Zhang, Ruihong, Li, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration. But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear. We hereby comparatively studied the osteogenic ability of our treated multi-walled carbon nanotubes (MCNTs) and the main inorganic mineral component of natural bone, nano-hydroxyapatite (nHA) in the same system, and tried to tell the related mechanism. In vitro culture of human adipose-derived mesenchymal stem cells (HASCs) on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA, the cell attachment strength and proliferation on the MCNTs were better. Most importantly, the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA, the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins, including specific bone-inducing ones. Moreover, the MCNTs could induce ectopic bone formation in vivo while the nHA could not, which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages. Therefore, MCNTs might be more effective materials for accelerating bone formation even than nHA. The MCNTs might promote osteogenic differentiation of HASCs better than nHA through activating Notch involved signaling pathways in vitro and induce ectopic bone formation in vivo by concentrating proteins including specific bone-inducing ones. [Display omitted] •The compacts of our treated MCNTs and nHA with the same size and nano-dimension were prepared to compare their osteogenic activity.•The cell attachment strength on the MCNTs was better, and the MCNTs could induce osteogenic differentiation of the cells in vitro and ectopic bone formation in vivo better than the nHA.•The MCNTs might induce osteogenic differentiation of the cells in vitro through activating Notch involved signaling pathways by concentrating more proteins including specific bone-inducing ones.•The MCNTs might stim
ISSN:2452-199X
2452-199X
DOI:10.1016/j.bioactmat.2020.08.015