MRI-Derived Dural Sac and Lumbar Vertebrae 3D Volumetry Has Potential for Detection of Marfan Syndrome

To assess the feasibility and diagnostic accuracy of MRI-derived 3D volumetry of lower lumbar vertebrae and dural sac segments using shape-based machine learning for the detection of Marfan syndrome (MFS) compared with dural sac diameter ratios (the current clinical standard). The final study sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostics (Basel) 2024-06, Vol.14 (12), p.1301
Hauptverfasser: Naas, Omar, Norajitra, Tobias, Lückerath, Christian, Fink, Matthias A, Maier-Hein, Klaus, Kauczor, Hans-Ulrich, Rengier, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess the feasibility and diagnostic accuracy of MRI-derived 3D volumetry of lower lumbar vertebrae and dural sac segments using shape-based machine learning for the detection of Marfan syndrome (MFS) compared with dural sac diameter ratios (the current clinical standard). The final study sample was 144 patients being evaluated for MFS from 01/2012 to 12/2016, of whom 81 were non-MFS patients (46 [67%] female, 36 ± 16 years) and 63 were MFS patients (36 [57%] female, 35 ± 11 years) according to the 2010 Revised Ghent Nosology. All patients underwent 1.5T MRI with isotropic 1 × 1 × 1 mm 3D T2-weighted acquisition of the lumbosacral spine. Segmentation and quantification of vertebral bodies L3-L5 and dural sac segments L3-S1 were performed using a shape-based machine learning algorithm. For comparison with the current clinical standard, anteroposterior diameters of vertebral bodies and dural sac were measured. Ratios between dural sac volume/diameter at the respective level and vertebral body volume/diameter were calculated. Three-dimensional volumetry revealed larger dural sac volumes ( < 0.001) and volume ratios ( < 0.001) at L3-S1 levels in MFS patients compared with non-MFS patients. For the detection of MFS, 3D volumetry achieved higher AUCs at L3-S1 levels (0.743, 0.752, 0.808, and 0.824) compared with dural sac diameter ratios (0.673, 0.707, 0.791, and 0.848); a significant difference was observed only for L3 ( < 0.001). MRI-derived 3D volumetry of the lumbosacral dural sac and vertebral bodies is a feasible method for quantifying dural ectasia using shape-based machine learning. Non-inferior diagnostic accuracy was observed compared with dural sac diameter ratio (the current clinical standard for MFS detection).
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics14121301