Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis

The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain - bikunin, encoded by AMBP - and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2008-01, Vol.8 (1), p.25-25, Article 25
Hauptverfasser: Hamm, Alexander, Veeck, Juergen, Bektas, Nuran, Wild, Peter J, Hartmann, Arndt, Heindrichs, Uwe, Kristiansen, Glen, Werbowetski-Ogilvie, Tamra, Del Maestro, Rolando, Knuechel, Ruth, Dahl, Edgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain - bikunin, encoded by AMBP - and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.
ISSN:1471-2407
1471-2407
DOI:10.1186/1471-2407-8-25