Effects of strain rate on tensile deformation behaviour in Ti-6Al-4V at cryogenic temperature

In this study, we investigated the effects of strain rate on tensile deformation behaviour in Ti-6Al-4V sheet at cryogenic temperature. X-ray diffraction (XRD) was used to identify the crystallographic orientation of rolled Ti-6Al-4V. A series of tensile tests were performed by constant strain rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2020, Vol.321, p.6010
Hauptverfasser: Ji, Min-Ki, Lee, Min-Su, Hyun, Yong-Taek, Jun, Tea-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we investigated the effects of strain rate on tensile deformation behaviour in Ti-6Al-4V sheet at cryogenic temperature. X-ray diffraction (XRD) was used to identify the crystallographic orientation of rolled Ti-6Al-4V. A series of tensile tests were performed by constant strain rate method (CRS) with variable strain rates (i.e., on the order of 1x10 -2 to 10 -4 •s- 1 ). Liquid nitrogen (LN 2 ) was used to mimic cryogenic environment, and for the thermal equilibrium the specimens were immersed in the vessel containing liquid nitrogen for ~10 minutes before tensile testing, and the temperature condition was continuously maintained during the testing. Microstructure and fracture surface was analysed by polarised light microscopy and scanning electron microscope (SEM). Electron backscatter diffraction (EBSD) was further used to characterise local deformation behaviour. Deformation twinning is occurred at cryogenic tempearture, which is rather different to the deformation at room temperature. It is thought that the twinning induced deformation behaviour may lead to a strength enhancement and a rate dependent ductility improvement. Key words: Ti-6Al-4V, cryogenic, microstructure, deformation twinning, EBSD
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202032106010