Multi-Enzymatic Cascade One-Pot Biosynthesis of 3'-Sialyllactose Using Engineered Escherichia coli

Among the human milk oligosaccharides (HMOs), one of the most abundant oligosaccharides and has great benefits for human health is 3'-sialyllactose (3'-SL). Given its important physiological functions and the lack of cost-effective production processes, we constructed an in vitro multi-enz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (16), p.3567
Hauptverfasser: Li, Zhongkui, Ni, Zhijian, Chen, Xiangsong, Wang, Gang, Wu, Jinyong, Yao, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the human milk oligosaccharides (HMOs), one of the most abundant oligosaccharides and has great benefits for human health is 3'-sialyllactose (3'-SL). Given its important physiological functions and the lack of cost-effective production processes, we constructed an in vitro multi-enzymatic cofactor recycling system for the biosynthesis of 3'-SL from a low-cost substrate. First, we constructed the biosynthetic pathway and increased the solubility of cytidine monophosphate kinase (CMK) with chaperones. We subsequently identified that β-galactosidase ( ) affects the yield of 3'-SL, and hence with the gene knocked out, a 3.3-fold increase in the production of 3'-SL was observed. Further, temperature, pH, polyphosphate concentration, and concentration of divalent metal ions for 3'-SL production were optimized. Finally, an efficient biotransformation system was established under the optimized conditions. The maximum production of 3'-SL reached 38.7 mM, and a molar yield of 97.1% from N-acetylneuraminic acid (NeuAc, sialic acid, SA) was obtained. The results demonstrate that the multi-enzymatic cascade biosynthetic pathway with cofactor regeneration holds promise as an industrial strategy for producing 3'-SL.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25163567