Multi-Enzymatic Cascade One-Pot Biosynthesis of 3'-Sialyllactose Using Engineered Escherichia coli
Among the human milk oligosaccharides (HMOs), one of the most abundant oligosaccharides and has great benefits for human health is 3'-sialyllactose (3'-SL). Given its important physiological functions and the lack of cost-effective production processes, we constructed an in vitro multi-enz...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (16), p.3567 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among the human milk oligosaccharides (HMOs), one of the most abundant oligosaccharides and has great benefits for human health is 3'-sialyllactose (3'-SL). Given its important physiological functions and the lack of cost-effective production processes, we constructed an in vitro multi-enzymatic cofactor recycling system for the biosynthesis of 3'-SL from a low-cost substrate. First, we constructed the biosynthetic pathway and increased the solubility of cytidine monophosphate kinase (CMK) with chaperones. We subsequently identified that β-galactosidase (
) affects the yield of 3'-SL, and hence with the
gene knocked out, a 3.3-fold increase in the production of 3'-SL was observed. Further, temperature, pH, polyphosphate concentration, and concentration of divalent metal ions for 3'-SL production were optimized. Finally, an efficient biotransformation system was established under the optimized conditions. The maximum production of 3'-SL reached 38.7 mM, and a molar yield of 97.1% from N-acetylneuraminic acid (NeuAc, sialic acid, SA) was obtained. The results demonstrate that the multi-enzymatic cascade biosynthetic pathway with cofactor regeneration holds promise as an industrial strategy for producing 3'-SL. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25163567 |