High capacity topological coding based on nested vortex knots and links

Optical knots and links have attracted great attention because of their exotic topological characteristics. Recent investigations have shown that the information encoding based on optical knots could possess robust features against external perturbations. However, as a superior coding scheme, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-05, Vol.13 (1), p.2705-2705, Article 2705
Hauptverfasser: Kong, Ling-Jun, Zhang, Weixuan, Li, Peng, Guo, Xuyue, Zhang, Jingfeng, Zhang, Furong, Zhao, Jianlin, Zhang, Xiangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical knots and links have attracted great attention because of their exotic topological characteristics. Recent investigations have shown that the information encoding based on optical knots could possess robust features against external perturbations. However, as a superior coding scheme, it is also necessary to achieve a high capacity, which is hard to be fulfilled by existing knot-carriers owing to the limit number of associated topological invariants. Thus, how to realize the knot-based information coding with a high capacity is a key problem to be solved. Here, we create a type of nested vortex knot, and show that it can be used to fulfill the robust information coding with a high capacity assisted by a large number of intrinsic topological invariants. In experiments, we design and fabricate metasurface holograms to generate light fields sustaining different kinds of nested vortex links. Furthermore, we verify the feasibility of the high-capacity coding scheme based on those topological optical knots. Our work opens another way to realize the robust and high-capacity optical coding, which may have useful impacts on the field of information transfer and storage. Robust and high capacity optical coding will be at the base of future developments of information transfer and storage. Here the authors develop a topological all-optical coding scheme, which possesses good stability and a high capacity, using nested vortex knots and links.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30381-w