High-dimensional data visualisation with the grand tour

In physics we often encounter high-dimensional data, in the form of multivariate measurements or of models with multiple free parameters. The information encoded is increasingly explored using machine learning, but is not typically explored visually. The barrier tends to be visualising beyond 3D, bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Laa, Ursula
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In physics we often encounter high-dimensional data, in the form of multivariate measurements or of models with multiple free parameters. The information encoded is increasingly explored using machine learning, but is not typically explored visually. The barrier tends to be visualising beyond 3D, but systematic approaches for this exist in the statistics literature. I use examples from particle and astrophysics to show how we can use the “grand tour” for such multidimensional visualisations, for example to explore grouping in high dimension and for visual identification of multivariate outliers. I then discuss the idea of projection pursuit, i.e. searching the high-dimensional space for “interesting” low dimensional projections, and illustrate how we can detect complex associations between multiple parameters.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202024506018