Recapitulation of physiologic and pathophysiologic pulsatile CSF flow in purpose-built high-throughput hydrocephalus bioreactors
Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 5...
Gespeichert in:
Veröffentlicht in: | Fluids and barriers of the CNS 2024-12, Vol.21 (1), p.103-18 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone. The absence of a tested and validated long-term in-vitro model that can incorporate clinically relevant parameters has limited hypothesis-driven studies and, in turn, limited our progress in understanding the mechanisms of shunt obstruction in hydrocephalus. Testing clinical parameters of flow, pressure, shear, catheter material, surface modifications, and others while optimizing for minimal protein, cellular, and blood interactions has yet to be done systematically for ventricular catheters. Several studies point to the need to not only understand how cells and tissues have occluded these shunt catheters but also how to stop the likely multi-faceted failure. For instance, studies show us that tissue occluding the ventricular catheter is primarily composed of proliferating astrocytes and cells of the macrophage lineage. Cell reactivity has been observed to follow flow gradients, with elevated levels of typically pro-inflammatory interleukin-6 produced under shear stress conditions greater than 0.5 dyne/[Formula: see text]. But also, that shear can shift cellular attachment. The Automated, In vitro Model for hydrocephalus research (AIMS), presented here, improves upon our previous long-term in vitro systems with specific goals of recapitulating bulk pulsatile cerebrospinal fluid (CSF) waveforms and steady-state flow directionality relevant to ventricular catheters used in hydrocephalus.
The AIMS setup was developed to recapitulate a wide range of physiologic and pathophysiologic CSF flow patterns with varying pulse amplitude, pulsation rate, and bulk flow rate with high throughput capabilities. These variables were specified in a custom-built user interface to match clinical CSF flow measurements. In addition to flow simulation capabilities, AIMS was developed as a modular setup for chamber testing and quality control. In this study, the capacity and consistency of single inlet resin ch |
---|---|
ISSN: | 2045-8118 2045-8118 |
DOI: | 10.1186/s12987-024-00600-1 |