Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity

Synaptic plasticity often involves changes in the structure and composition of dendritic spines. Vesicular cargos and organelles enter spines either by exocytosing in the dendrite shaft and diffusing into spines or through a kinesin to myosin hand-off at the base of spines. Here we present evidence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-09, Vol.7 (1), p.12741-12741, Article 12741
Hauptverfasser: McVicker, Derrick P., Awe, Adam M., Richters, Karl E., Wilson, Rebecca L., Cowdrey, Diana A., Hu, Xindao, Chapman, Edwin R., Dent, Erik W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synaptic plasticity often involves changes in the structure and composition of dendritic spines. Vesicular cargos and organelles enter spines either by exocytosing in the dendrite shaft and diffusing into spines or through a kinesin to myosin hand-off at the base of spines. Here we present evidence for microtubule (MT)-based targeting of a specific motor/cargo pair directly into hippocampal dendritic spines. During transient MT polymerization into spines, the kinesin KIF1A and an associated cargo, synaptotagmin-IV (syt-IV), are trafficked in unison along MTs into spines. This trafficking into selected spines is activity-dependent and results in exocytosis of syt-IV-containing vesicles in the spine head. Surprisingly, knockdown of KIF1A causes frequent fusion of syt-IV-containing vesicles throughout the dendritic shaft and diffusion into spines. Taken together, these findings suggest a mechanism for targeting dendritic cargo directly into spines during synaptic plasticity and indicate that MT-bound kinesins prevent unregulated fusion by sequestering vesicular cargo to MTs. Transport of cargo into dendritic spines is required for synaptic plasticity. McVicker et al. describe a method of activity-dependent transport of a kinesin KIF1A and its cargo synaptotagmin-IV along microtubules that are transiently polymerized into dendritic spines.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12741