Dual-energy CT in gout patients: Do all colour-coded lesions actually represent monosodium urate crystals?

Background Dual-energy CT (DECT) can acknowledge differences in tissue compositions and can colour-code tissues with specific features including monosodium urate (MSU) crystals. However, when evaluating gout patients, DECT frequently colour-codes material not truly representing MSU crystals and this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthritis research & therapy 2020-09, Vol.22 (1), p.1-212, Article 212
Hauptverfasser: Christiansen, Sara Nysom, Müller, Felix Christoph, Østergaard, Mikkel, Slot, Ole, Maller, Jakob M, Bargesen, Henrik F, Gosvig, Kasper Kjaerulf, Terslev, Lene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Dual-energy CT (DECT) can acknowledge differences in tissue compositions and can colour-code tissues with specific features including monosodium urate (MSU) crystals. However, when evaluating gout patients, DECT frequently colour-codes material not truly representing MSU crystals and this might lead to misinterpretations. The characteristics of and variations in properties of colour-coded DECT lesions in gout patients have not yet been systematically investigated. The objective of this study was to evaluate the properties and locations of colour-coded DECT lesions in gout patients. Methods DECT of the hands, knees and feet were performed in patients with suspected gout using factory default gout settings, and colour-coded DECT lesions were registered. For each lesion, properties [mean density (mean of Hounsfield Units (HU) at 80 kV and Sn150kV), mean DECT ratio and size] and location were determined. Subgroup analysis was performed post hoc evaluating differences in locations of lesions when divided into definite MSU depositions and possibly other lesions. Results In total, 4033 lesions were registered in 27 patients (23 gout patients, 3918 lesions; 4 non-gout patients, 115 lesions). In gout patients, lesions had a median density of 160.6 HU and median size of 6 voxels, and DECT ratios showed an approximated normal distribution (mean 1.06, SD 0.10), but with a right heavy tail consistent with the presence of smaller amounts of high effective atomic number lesions (e.g. calcium-containing lesions). The most common locations of lesions were 1st metatarsophalangeal (MTP1), knee and midtarsal joints along with quadriceps and patella tendons. Subgroup analyses showed that definite MSU depositions (large volume, low DECT ratio, high density) had a similar distribution pattern, whereas possible calcium-containing material (high DECT ratio) and non-gout MSU-imitating lesions (properties as definite MSU depositions in non-gout patients) were primarily found in some larger joints (knee, midtarsal and talocrural) and tendons (Achilles and quadriceps). MTP1 joints and patella tendons showed only definite MSU depositions. Conclusion Colour-coded DECT lesions in gout patients showed heterogeneity in properties and distribution. MTP1 joints and patella tendons exclusively showed definite MSU depositions. Hence, a sole focus on these regions in the evaluation of gout patients may improve the specificity of DECT scans. Keywords: Dual-energy CT, Gout, MSU crystal
ISSN:1478-6362
1478-6354
1478-6362
DOI:10.1186/s13075-020-02283-z