An Optimization Method for Maximizing the Low Frequency Sound Insulation of Plate Structures

A combined approach based on finite element method, boundary element method, and genetic algorithm (FEM-BEM-GA) is proposed for optimizing the low frequency sound (LFS) insulation performance of plate structures. This approach can identify the optimal structural parameters (especially concerning the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2018-01, Vol.2018 (2018), p.1-8
1. Verfasser: Ou, Dayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combined approach based on finite element method, boundary element method, and genetic algorithm (FEM-BEM-GA) is proposed for optimizing the low frequency sound (LFS) insulation performance of plate structures. This approach can identify the optimal structural parameters (especially concerning the effects of arbitrary boundary conditions) so as to maximize the structural overall LFS insulation. The basic ideas of this approach are as follows: (1) the sound transmission loss (TL) analysis of a plate with arbitrary boundary conditions is conducted by the coupled FEM-BEM method; (2) the single-number rating method (such as low frequency sound transmission class) is used to assess the plate’s overall LFS insulation; and (3) the genetic algorithm (GA) is employed for searching the optimal solutions of the multiple-parameter optimization problem. The proposed approach is subsequently illustrated by numerical studies. The results show the effectiveness of consideration of the effects of boundary condition in the plate’s LFS insulation optimization and demonstrate the feasibility and effectiveness of this approach as a structure design tool.
ISSN:1070-9622
1875-9203
DOI:10.1155/2018/7849327